School of Information Technology Indian Institute of Technology, Kharagpur

IT 60108: Soft Computing Applications Mid-Semester Examination Spring, 2015-2016

Maximum Marks: 80 Time: 2 hours

Instructions:

1. Attempt ALL questions. There is **NO** negative marking.

- **2.** The question paper consists of three pages and a total of **six** questions with some questions having sub-parts.
- **3.** Marks allotted for each question have been clearly mentioned, students are advised to give brief, precise and to-the point answers to all questions, strictly keeping the marks allotted in consideration.

1. Which of the following is/ are fuzzy set(s). Justify your answer

[4 x 2=8]

- (a) $A = \{(x_1,0),(x_2,0),(x_3,0),(x_4,0)\}$ defined over a universe of discourse $X = \{x_1,x_2,x_3,x_4,x_5,x_6\}$
- (b) $B = \left\{ (x, \mu_B(x)) \middle| x \in Z, \text{ set of all integers and } \mu_B(x) = \frac{1-x}{1+x} \right\}$
- (c) $C = D \times E$ where D and E are two fuzzy sets and \times denotes the Cartesian product of two fuzzy sets.

(d)

2. Find the results of the fuzzy operations as instructed in the following:

[2 x 4=8]

(a) $R = A \times B$ where

$$A = \left\{ \frac{0.1}{x_1}, \frac{0.2}{x_3}, \frac{0.5}{x_5} \right\}$$

$$B = \left\{ \frac{0.6}{x_2}, \frac{0.8}{x_3}, \frac{1.0}{x_6} \right\}$$

(b) λ cut of the implication, If x is A then y is B, where

$$A = \{(x_1, 0.1), (x_2, 0.3), (x_3, 0.2)\}$$

$$B = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.1)\}$$

and both are defined over $X = \{x_1, x_2, x_3, x_4\}$ and $\lambda = 0.7$

3. Any road is characterized with two fuzzy linguistics WIDE and NARROW whereas a journey is characterized with two fuzzy linguistics HIGH RISK and LOW RISK. The universe of discourses of road and journey are {Large, Medium, Small} and {High, Moderate, Low}, respectively.

A road and journey are associated with the following fuzzy implication:

If road is WIDE then driving is RISKY.

For the MG Road, it is given that

Road is WIDE =
$$\left\{\frac{0.3}{Large}, \frac{0.5}{Medium}, \frac{0.7}{Small}\right\}$$

driving is RISKY =
$$\left\{\frac{0.9}{\text{High}}, \frac{0.7}{\text{Moderate}}, \frac{0.6}{\text{Low}}\right\}$$

Driving on M.G. road is RISKY =
$$\left\{\frac{0.7}{\text{High}}, \frac{0.6}{\text{Moderate}}, \frac{0.5}{\text{Low}}\right\}$$

What is the fuzzy set that, M . G. road is NARROW?

[10]

4. In a fuzzy controller for two input x = 6 and y = 25, two fuzzy rules are fired as below:

$$R_i$$
: IF x is A_1 AND y is B_1 THEN z is C_1

$$R_i$$
: IF x is A_2 AND y is B_2 THEN z is C_2

The fuzzy sets involved in R_i and R_i are known as given below:

- (a) Graphically show the combined output due to R_i and R_j for x=6 and y=25.
- (b) Apply COS (Center of Sum) defuzzification method to obtain the crisp value of the output when x=6 and y=25. [2 x 7=14]
- 5. Write brief answers to the following questions:

[4 x 4=16]

- (a) Draw an ANN with the minimum number of perceptron which would classify input pattern 00, 01, 10 and 11 into two classes 0 and 1 following OR-logic.
- (b) The Tanh sigmoid transfer function \emptyset is defined as follows:

$$\emptyset(I) = \frac{e^{\theta i} - e^{-\theta i}}{e^{\theta i} + e^{-\theta i}}$$

where symbols bear usual meaning.

Prove that
$$\frac{\partial \emptyset}{\partial I} = \theta (1 + \emptyset(I))(1 - \emptyset(I))$$

- (c) State the Delta rule, which is usually followed in Back propagation algorithm. Is the rule applicable to any type of ANN?
- (d) Draw a symbolic diagram (also called bubble diagarm) of a perceptron and clearly show the different unknown parameters in it.
- 6. Answer the following:

[8 x 3=24]

- (a) Draw a MLFFNN having l-m-n configuration. Clearly show its network parameters.
- (b) Suppose, $T=< T_o, T_I>$ is a training data for the supervised learning of a l-m-n network. If $I_i\in T_I$ is the i^{th} input applied to the network, then express the error at the k^{th} perceptron in the output layer. Also, obtain the expression for total error E due to all $I_i\in T_I$.
- (c) If w_{ij} and v_{jk} denote the weight of the link from an i^{th} neuron in the input layer to the j^{th} neuron in the hidden layer and from the j^{th} neuron in the hidden layer to the k^{th} neuron in the output layer, and e_K denotes the error of the k^{th} neuron in the output layer, then write down the chain rule of differentiation to calculate the following:

$$\frac{\partial e_K}{\partial w_{ij}}$$
 and $\frac{\partial e_K}{\partial v_{ij}}$.

Clearly mention all the symbols used in the rule you have stated.